PCT Patent Application WO201482672A1

Acquisition and Assessment of Classically Non-Inferable Information

Abstract

Mind-enabled question answering (MEQA) systems (300, 340) and methods (400, 500) produce answers (313) that are not inferable from information available from private databases, online searching or other traditional sources. MEQA systems utilize information provided by using devices (200) and methods that are responsive to an influence of mind. Preferred embodiments of MEQA technology use a Bayesian Network to calculate the probability of an answer’s correctness. MEQA systems and methods utilize high speed non-deterministic random number generators (NDRNGs). Preferred NDRNGs (202) achieve high statistical quality without randomness correction, allowing the special properties of quantum measurements to be preserved.

US Patent Number 8,423,297 B2

Device and Method for Responding to Influences of Mind

Abstract

Mental influence detectors and corresponding methods are useful for detecting an influence of mind and hidden or classically non-inferable information. An anomalous effect detector includes a source of non-deterministic random numbers, a converter to convert a property of numbers, a processor to accept converter output and to produce an output signal representative of an influence of mind. The processor output signal contains fewer numbers than the input. A quantum computer includes a physical source of entropy to generate output numbers; a source of test numbers; a measurement processor to accept output numbers and to measure a relationship between process numbers and at least one test number to produce an output representative of an influence of mind.

US Patent Number RE44,097 E

Device and Method for Responding to Influences of Mind

Abstract

In the field of direct mind-machine interactions, prior art devices and methods do not provide sufficiently fast and reliable results. Mental influence detectors (100, 140, 400, 430) and corresponding methods provide fast and reliable results useful for detecting an influence of mind and hidden or classically non-inferable information. An anomalous effect detector (100) includes a source (104) of non-deterministic random numbers (110), a converter (114) to convert a property of numbers, a processor to accept converter output (118) and to produce an output signal (124) representative of an influence of mind. The processor output signal (124) contains fewer numbers than the input (110). A quantum computer (400) includes a physical source of entropy (404) to generate output numbers (405); a source (406) of test numbers (407); a measurement processor 410) to accept output numbers (405) and to measure a relationship between process numbers and at least one test number to produce an output (414) representative of an influence of mind.

US Patent Application 2013/0036078 A9

True random number generator and entropy calculation device and method

Abstract

An anomalous effect detector (100, 130, 300, 800, 830, 840, 900, 930) responsive to an influence of mind comprises a source of non-deterministic random numbers, SNDRN, (104, 134, 310), a phase-sensitive filter (108, 140, 170, 320), and a results interface (110, 160, 340). In some embodiments, the phase-sensitive filter comprises a complex filter (170). An artificial sensory neuron (802, 810, 820, 906) comprises a SNDRN. Preferably, several artificial sensory neurons (802, 906) are grouped in a small volume. An analog artificial sensory detector (800) comprises a plurality of analog artificial sensory neurons (802), an abstracting processor (804) and a control or feedback unit (806). Some embodiments include an artificial neural network (850). An artificial consciousness network (900) contains a plurality of artificial neural networks (902, 914). One of the artificial neural networks (914) comprises an activation pattern meta-analyzer. An artificial consciousness device comprises a cluster (936) of artificial consciousness networks, a sensory input device (932) to provide sensory input signals (933) to the input of one or more ANNs in ACD (930), and an output device (938).
Correction of US Patent Application 2010/0057653 A1

US Patent Number 6,862,605 (Under License)

Device and Method for Responding to Influences of Mind

Abstract

A random number generator includes a first oscillator that provides a first oscillatory signal to a processor, and a second oscillator that provides a signal to a frequency multiplier, which in turn provides a second oscillatory signal to the processor. The relative jitter between the two oscillatory signals contains a calculable amount of entropy that is extracted by the processor to produce a sequence of true random numbers.

US Patent Numbers 6,324,558, 6,763,364, 7,096,242 and 7,752,247 (Under License)

Random number generator and generation method

Abstract

An RNG circuit is connected to the parallel port of a computer. The circuit includes a flat source of white noise and a CMOS amplifier circuit compensated in the high frequency range. A low-frequency cut-off is selected to maintain high band-width yet eliminate the 1/f amplifier noise tail. A CMOS comparator with a 10 nanosecond rise time converts the analog signal to a binary one. A shift register converts the serial signal to a 4-bit parallel one at a sample rate selected at the knee of the serial dependence curve. Two levels of XOR defect correction produce a BRS at 20 kHz, which is converted to a 4-bit parallel word, latched and buffered. The entire circuit is powered from the data pins of the parallel port. A device driver interface in the computer operates the RNG. The randomness defects with various levels of correction and sample rates are calculated and the RNG is optimized before manufacture.